# AMRIENT INTELLIGENCE AND INTERNET OF THINGS *Convergent<sub>Technologies</sub>*





Edited By MD RASHID MAHMOOD ROHIT RAJA HARPREET KAUR SANDEEP KUMAR KAPIL KUMAR NAGWANSHI



# Ambient Intelligence and Internet of Things

## **Convergent Technologies**

Edited by Md Rashid Mahmood Rohit Raja Harpreet Kaur Sandeep Kumar and Kapil Kumar Nagwanshi





This edition first published 2023 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2023 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

#### Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

#### Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

#### Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-82123-6

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

## Contents

| Pr | eface                                                                                                                                           |                                                | xv |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----|--|--|
| 1  | Ambient Intelligence and Internet of Things: An Overview<br>Md Rashid Mahmood, Harpreet Kaur, Manpreet Kaur,<br>Rohit Raja and Imran Ahmed Khan |                                                |    |  |  |
|    | 1.1                                                                                                                                             | Introduction                                   | 2  |  |  |
|    | 1.2                                                                                                                                             | Ambient Intelligent System                     | 5  |  |  |
|    | 1.3                                                                                                                                             | Characteristics of AmI Systems                 | 6  |  |  |
|    | 1.4                                                                                                                                             | Driving Force for Ambient Computing            | 9  |  |  |
|    | 1.5                                                                                                                                             | Ambient Intelligence Contributing Technologies | 9  |  |  |
|    | 1.6                                                                                                                                             | Architecture Overview                          | 11 |  |  |
|    | 1.7                                                                                                                                             | The Internet of Things                         | 14 |  |  |
|    | 1.8                                                                                                                                             | IoT as the New Revolution                      | 14 |  |  |
|    | 1.9 IoT Challenges                                                                                                                              |                                                |    |  |  |
|    | 1.10 Role of Artificial Intelligence in the Internet                                                                                            |                                                |    |  |  |
|    | of Things (IoT)                                                                                                                                 |                                                |    |  |  |
|    | 1.11                                                                                                                                            | IoT in Various Domains                         | 19 |  |  |
|    | 1.12                                                                                                                                            | Healthcare                                     | 20 |  |  |
|    | 1.13                                                                                                                                            | Home Automation                                | 20 |  |  |
|    | 1.14                                                                                                                                            | Smart City                                     | 21 |  |  |
|    | 1.15                                                                                                                                            | Security                                       | 21 |  |  |
|    | 1.16                                                                                                                                            | Industry                                       | 22 |  |  |
|    | 1.17                                                                                                                                            | Education                                      | 23 |  |  |
|    | 1.18                                                                                                                                            | Agriculture                                    | 24 |  |  |
|    | 1.19                                                                                                                                            | Tourism                                        | 26 |  |  |
|    | 1.20                                                                                                                                            | Environment Monitoring                         | 27 |  |  |
|    | 1.21                                                                                                                                            | Manufacturing and Retail                       | 28 |  |  |
|    | 1.22                                                                                                                                            | Logistics                                      | 28 |  |  |
|    | 1.23                                                                                                                                            | Conclusion                                     | 29 |  |  |
|    |                                                                                                                                                 | References                                     | 29 |  |  |

vi Contents

| 2 | An  | Overview of Internet of Things Related Protocols,       |      |
|---|-----|---------------------------------------------------------|------|
|   |     | nologies, Challenges and Application                    | 33   |
|   | Dee | vesh Chaudhary and Prakash Chandra Sharma               |      |
|   | 2.1 | Introduction                                            | 34   |
|   |     | 2.1.1 History of IoT                                    | 35   |
|   |     | 2.1.2 Definition of IoT                                 | 36   |
|   |     | 2.1.3 Characteristics of IoT                            | 36   |
|   | 2.2 | Messaging Protocols                                     | 37   |
|   |     | 2.2.1 Constrained Application Protocol                  | 38   |
|   |     | 2.2.2 Message Queue Telemetry Transport                 | 39   |
|   |     | 2.2.3 Extensible Messaging and Presence Protocol        | 41   |
|   |     | 2.2.4 Advance Message Queuing Protocol (AMQP)           | 41   |
|   | 2.3 | Enabling Technologies                                   | 41   |
|   |     | 2.3.1 Wireless Sensor Network                           | 41   |
|   |     | 2.3.2 Cloud Computing                                   | 42   |
|   |     | 2.3.3 Big Data Analytics                                | 43   |
|   |     | 2.3.4 Embedded System                                   | 43   |
|   | 2.4 | IoT Architecture                                        | 44   |
|   | 2.5 | Applications Area                                       | 46   |
|   | 2.6 | Challenges and Security Issues                          | 49   |
|   | 2.7 | Conclusion                                              | 50   |
|   |     | References                                              | 51   |
| 3 | Am  | bient Intelligence Health Services Using IoT            | 53   |
|   | Ран | an Whig, Ketan Gupta, Nasmin Jiwani and Arun Velu       |      |
|   | 3.1 | Introduction                                            | 54   |
|   | 3.2 | Background of AML                                       | 55   |
|   |     | 3.2.1 What is AML?                                      | 55   |
|   | 3.3 | AmI Future                                              | 58   |
|   | 3.4 | Applications of Ambient Intelligence                    | 60   |
|   |     | 3.4.1 Transforming Hospitals and Enhancing Patient Care |      |
|   |     | With the Help of Ambient Intelligence                   | 60   |
|   |     | 3.4.2 With Technology, Life After the COVID-19 Pandemi  | c 61 |
|   | 3.5 | COVID-19                                                | 63   |
|   |     | 3.5.1 Prevention                                        | 64   |
|   |     | 3.5.2 Symptoms                                          | 64   |
|   | 3.6 | Coronavirus Worldwide                                   | 65   |
|   | 3.7 | Proposed Framework for COVID-19                         | 67   |
|   | 3.8 | Hardware and Software                                   | 69   |
|   |     | 3.8.1 Hardware                                          | 69   |

|   |      | 3.8.2    | Heartbe   | at Sensor                                    | 70       |
|---|------|----------|-----------|----------------------------------------------|----------|
|   |      | 3.8.3    | Principl  | e                                            | 70       |
|   |      | 3.8.4    | Working   | 5                                            | 70       |
|   |      | 3.8.5    | Tempera   | ature Sensor                                 | 71       |
|   |      | 3.8.6    | Principl  | e                                            | 71       |
|   |      | 3.8.7    | Working   | g<br>2                                       | 71       |
|   |      | 3.8.8    | BP Sens   | or                                           | 72       |
|   |      | 3.8.9    | Principl  | e                                            | 72       |
|   |      | 3.8.10   | Working   | g                                            | 72       |
|   |      |          | Breadboa  | rd                                           | 73       |
|   |      | Node     |           |                                              | 73       |
|   |      | Advai    | 0         |                                              | 76       |
|   | 3.12 | Conc     |           |                                              | 76       |
|   |      | Refer    | ences     |                                              | 76       |
| 4 | Secu | irity in | Ambien    | t Intelligence and Internet of Things        | 81       |
|   | Saln | nan Ar   | afath Mo  | hammed and Md Rashid Mahmood                 |          |
|   | 4.1  | Intro    | duction   |                                              | 82       |
|   |      |          | rch Areas |                                              | 84       |
|   | 4.3  |          | •         | ts and Requirements                          | 84       |
|   |      | 4.3.1    |           | Network Security Threats and Requirements    | 85       |
|   |      |          |           | Availability                                 | 86       |
|   |      |          |           | Confidentiality                              | 86       |
|   |      |          |           | Integrity                                    | 86       |
|   |      |          |           | Key Management and Authorization             | 86       |
|   |      | 4.3.2    | •         | Threats and Requirements Due to Sensing      | 0-       |
|   |      |          |           | ity in the Network                           | 87       |
|   |      |          |           | Availability<br>Confidentiality              | 87       |
|   |      |          |           | •                                            | 87<br>87 |
|   |      |          |           | Integrity<br>Key Distribution and Management | 87<br>87 |
|   |      |          |           | Resilience to Node Capture                   | 88       |
|   |      | 4.3.3    |           | Threats and Requirements in AmI              | 00       |
|   |      | ч.э.э    |           | Based on Sensor Network                      | 88       |
|   |      |          |           | Availability                                 | 88       |
|   |      |          | 4.3.3.2   | Confidentiality                              | 89       |
|   |      |          | 4.3.3.3   | Confidentiality of Location                  | 89       |
|   |      |          | 4.3.3.4   | Integrity                                    | 89       |
|   |      |          | 4.3.3.5   | Nonrepudiation                               | 90       |
|   |      |          | 4.3.3.6   | -                                            | 90       |
|   |      |          | 4.3.3.7   | Intrusion Detection                          | 90       |

|     |                                           | 4.3.3.8    | Confidentiality                             | 91  |  |  |
|-----|-------------------------------------------|------------|---------------------------------------------|-----|--|--|
|     |                                           | 4.3.3.9    | Trust Management                            | 92  |  |  |
| 4.4 | 0                                         |            |                                             |     |  |  |
|     | Designed With No Focus on Security in AmI |            |                                             |     |  |  |
|     | and Ic                                    | T Based    | on Sensor Networks                          | 92  |  |  |
|     | 4.4.1                                     | Infrastru  | actureless                                  | 94  |  |  |
|     |                                           | 4.4.1.1    | Dissemination-Based Routing                 | 94  |  |  |
|     |                                           |            | Context-Based Routing                       | 98  |  |  |
|     | 4.4.2                                     | Infrastru  | icture-Based                                | 99  |  |  |
|     |                                           | 4.4.2.1    | Network with Fixed Infrastructure           | 100 |  |  |
|     |                                           | 4.4.2.2    | New Routing Strategy for Wireless Sensor    |     |  |  |
|     |                                           |            | Networks to Ensure Source Location          |     |  |  |
|     |                                           |            | Privacy                                     | 100 |  |  |
| 4.5 | Proto                                     | cols Desig | gned for Security Keeping Focus on Security |     |  |  |
|     | at Des                                    | sign Time  | for AmI and IoT Based on Sensor Network     | 101 |  |  |
|     | 4.5.1                                     | Secure F   | Routing Algorithms                          | 101 |  |  |
|     |                                           | 4.5.1.1    | Identity-Based Encryption (I.B.E.) Scheme   | 101 |  |  |
|     |                                           | 4.5.1.2    | Policy-Based Cryptography and Public        |     |  |  |
|     |                                           |            | Encryption with Keyword Search              | 102 |  |  |
|     |                                           | 4.5.1.3    | Secure Content-Based Routing                | 102 |  |  |
|     |                                           | 4.5.1.4    | Secure Content-Based Routing Using          |     |  |  |
|     |                                           |            | Local Key Management Scheme                 | 103 |  |  |
|     |                                           | 4.5.1.5    | Trust Framework Using Mobile Traces         | 103 |  |  |
|     |                                           | 4.5.1.6    | Policy-Based Authority Evaluation Scheme    | 103 |  |  |
|     |                                           | 4.5.1.7    | Optimized Millionaire's Problem             | 104 |  |  |
|     |                                           | 4.5.1.8    | Security in Military Operations             | 104 |  |  |
|     |                                           | 4.5.1.9    | A Security Framework Application            |     |  |  |
|     |                                           |            | Based on Wireless Sensor Networks           | 104 |  |  |
|     |                                           | 4.5.1.10   | Trust Evaluation Using Multifactor          |     |  |  |
|     |                                           |            | Method                                      | 105 |  |  |
|     |                                           |            | Prevention of Spoofing Attacks              | 105 |  |  |
|     |                                           |            | QoS Routing Protocol                        | 106 |  |  |
|     |                                           |            | Network Security Virtualization             | 106 |  |  |
|     | 4.5.2                                     | -          | ison of Routing Algorithms and Impact       |     |  |  |
|     |                                           | on Secu    |                                             | 106 |  |  |
|     | 4.5.3                                     |            | g Intelligence in IoT Networks              |     |  |  |
|     |                                           |            | rtificial Intelligence                      | 111 |  |  |
|     |                                           | 4.5.3.1    | Fuzzy Logic-1                               | 111 |  |  |
|     |                                           | 4.5.3.2    | Fuzzy Logic-2                               | 112 |  |  |
| 4.6 |                                           |            | brid Model in Military Application          |     |  |  |
|     | for Enhanced Security 11                  |            |                                             |     |  |  |

|   |      | 4.6.1   | Overall System    | n Architecture                  | 114 |
|---|------|---------|-------------------|---------------------------------|-----|
|   |      | 4.6.2   | Best Candidate    | e Selection                     | 114 |
|   |      | 4.6.3   | Simulation Res    | sults in Omnet++                | 115 |
|   | 4.6  | Conc    | usion             |                                 | 117 |
|   |      | Refer   | ences             |                                 | 118 |
| 5 | Fut  | uristic | AI Convergenc     | e of Megatrends: IoT and Cloud  |     |
|   | Con  | nputin  | 5                 |                                 | 125 |
|   | Cha  | nki Pa  | ıdey, Yogesh Kı   | ımar Sahu,                      |     |
|   |      |         |                   | Md Rashid Mahmood,              |     |
|   | Pra  | bira Kı | mar Sethy and     | Santi Kumari Behera             |     |
|   | 5.1  | Intro   | luction           |                                 | 126 |
|   |      | 5.1.1   | Our Contribut     | ion                             | 128 |
|   | 5.2  |         | odology           |                                 | 129 |
|   |      |         | Statistical Info  |                                 | 130 |
|   | 5.3  |         | cial Intelligence |                                 | 131 |
|   |      | 5.3.1   |                   | eas of IoT Technologies         | 132 |
|   |      |         | 5.3.1.1 Energ     | gy Management                   | 132 |
|   |      |         |                   | Vireless Systems                | 134 |
|   |      |         | 5.3.1.3 Risk      |                                 | 136 |
|   |      |         | 5.3.1.4 Smar      | •                               | 138 |
|   |      |         | 5.3.1.5 Healt     |                                 | 139 |
|   | 5.4  |         | unsforming Clo    |                                 | 140 |
|   |      |         |                   | eas of Cloud Computing          | 152 |
|   |      |         | 0,                | rce Management                  | 154 |
|   |      |         | Edge Computi      | e                               | 155 |
|   |      | 5.4.4   | Distributed Ed    | ge Computing and Edge-of-Things |     |
|   |      |         | (EoT)             |                                 | 158 |
|   |      | 5.4.5   | 0 1               | g in Cloud Computing            | 158 |
|   |      | 5.4.6   | Soft Computin     | g and Others                    | 161 |
|   | 5.5  | Conc    |                   |                                 | 174 |
|   |      | Refer   | inces             |                                 | 174 |
| 6 | Ana  | lysis o | Internet of Th    | ings Acceptance Dimensions      |     |
|   | in H | Iospita | .S                |                                 | 189 |
|   |      | -       | •                 | nish Mohan Baral,               |     |
|   |      |         | -                 | d Sharad Chandra Srivastava     |     |
|   |      |         | luction           |                                 | 190 |
|   | 6.2  |         | ture Review       |                                 | 191 |
|   |      | 6.2.1   | Overview of Ir    | iternet of Things               | 191 |

|   |            | ( ) ) | Internet of This on in II of the con-               | 101 |
|---|------------|-------|-----------------------------------------------------|-----|
|   |            | 6.2.2 | 0                                                   | 191 |
|   |            | 6.2.3 | /1                                                  | 193 |
|   |            |       | 6.2.3.1 Technological Context (TC)                  | 193 |
|   |            |       | 6.2.3.2 Organizational Context (OC)                 | 194 |
|   | 6.0        | D     | 6.2.3.3 Environmental Concerns (EC)                 | 195 |
|   | 6.3        |       | urch Methodology                                    | 195 |
|   | <i>с</i> 1 |       | Demographics of the Respondents                     | 196 |
|   | 6.4        |       | Analysis                                            | 196 |
|   |            | 6.4.1 | Reliability and Validity                            | 196 |
|   |            |       | 6.4.1.1 Cronbach's Alpha                            | 196 |
|   |            |       | 6.4.1.2 Composite Reliability                       | 201 |
|   |            | 6.4.2 | 1 / / /                                             | 201 |
|   |            | 6.4.3 |                                                     | 201 |
|   |            |       | 6.4.3.1 Divergent or Discriminant Validity          | 204 |
|   |            | 6.4.4 | 1 0                                                 | 205 |
|   | 6.5        |       | ission                                              | 206 |
|   |            |       | Technological Context                               | 206 |
|   |            | 6.5.2 | 0                                                   | 207 |
|   |            | 6.5.3 | Environmental Context                               | 208 |
|   | 6.6        |       | lusion                                              | 209 |
|   |            | Refer | ences                                               | 209 |
| 7 |            |       | Г in Sustainable Healthcare Systems                 | 215 |
|   | Am         |       | i, Ritesh Pratap Singh and Neha Jain                |     |
|   | 7.1        | Intro | duction                                             | 216 |
|   | 7.2        | Basic | Structure of IoT Implementation in the              |     |
|   |            | Healt | hcare Field                                         | 217 |
|   | 7.3        | Diffe | rent Technologies of IoT for the Healthcare Systems | 221 |
|   |            | 7.3.1 | On the Basis of the Node Identification             | 223 |
|   |            | 7.3.2 | On the Basis of the Communication Method            | 223 |
|   |            | 7.3.3 | Depending on the Location of the Object             | 224 |
|   | 7.4        | Appli | cations and Examples of IoT in the                  |     |
|   |            | Healt | hcare Systems                                       | 225 |
|   |            | 7.4.1 | IoT-Based Healthcare System to Encounter            |     |
|   |            |       | COVID-19 Pandemic Situations                        | 225 |
|   |            | 7.4.2 | Wearable Devices                                    | 226 |
|   |            | 7.4.3 | IoT-Enabled Patient Monitoring Devices              |     |
|   |            |       | From Remote Locations                               | 227 |
|   |            |       | 7.4.3.1 Pulse Rate Sensor                           | 227 |
|   |            |       | 7.4.3.2 Respiratory Rate Sensors                    | 229 |

|   |      |          | 7.4.3.3 Body Temperature Sensors                   | 231 |
|---|------|----------|----------------------------------------------------|-----|
|   |      |          | 7.4.3.4 Blood Pressure Sensing                     | 232 |
|   |      |          | 7.4.3.5 Pulse Oximetry Sensors                     | 233 |
|   | 7.5  | Comp     | panies Associated With IoT and Healthcare          |     |
|   |      | Sector   | r Worldwide                                        | 234 |
|   | 7.6  | Conc     | lusion and Future Enhancement in the               |     |
|   |      | Healt    | hcare System With IoT                              | 237 |
|   |      | Refer    | ences                                              | 238 |
| 8 | Fog  | Comp     | uting Paradigm for Internet of Things Applications | 243 |
|   | Upe  | ndra V   | erma and Diwakar Bhardwaj                          |     |
|   | 8.1  | Intro    | duction                                            | 243 |
|   | 8.2  | Chall    | enges                                              | 247 |
|   | 8.3  | Fog C    | Computing: The Emerging Era of Computing           |     |
|   |      | Parad    | igm                                                | 248 |
|   |      | 8.3.1    |                                                    | 248 |
|   |      |          | Fog Computing Characteristic                       | 249 |
|   |      | 8.3.3    | Comparison Between Cloud and Fog Computing         |     |
|   |      |          | Paradigm                                           | 250 |
|   |      |          | When to Use Fog Computing                          | 250 |
|   |      |          | Fog Computing Architecture for Internet of Things  | 251 |
|   |      |          | Fog Assistance to Address the New IoT Challenges   | 252 |
|   |      |          | Devices Play a Role of Fog Computing Node          | 253 |
|   | 8.4  |          | ed Work                                            | 254 |
|   | 8.5  | •        | Computing Challenges                               | 254 |
|   | 8.6  | 0        | upported IoT Applications                          | 262 |
|   | 8.7  |          | nary and Conclusion                                | 265 |
|   |      | Refer    | ences                                              | 265 |
| 9 | App  | olicatio | n of Internet of Things in Marketing Management    | 273 |
|   | Arsl | hi Nain  | n, Anandhavalli Muniasamy and Hamed Alqahtani      |     |
|   | 9.1  |          | duction                                            | 273 |
|   | 9.2  |          | ture Review                                        | 275 |
|   |      | 9.2.1    | 1 0                                                | 276 |
|   |      |          | Product Life Cycle (PLC)                           | 277 |
|   |      |          | Business Process Management (BPM)                  | 278 |
|   |      |          | Ambient Intelligence (AmI)                         | 279 |
|   |      |          | IoT and CRM Integration                            | 280 |
|   |      |          | IoT and BPM Integration                            | 280 |
|   |      | 9.2.7    | IoT and Product Life Cycle                         | 282 |

|    |       | 9.2.8   | IoT in MMg                  | ant                           | 282        |
|----|-------|---------|-----------------------------|-------------------------------|------------|
|    |       |         | C C                         | AmI on Marketing Paradigms    | 283        |
|    |       |         | ch Methodo                  |                               | 284        |
|    | 9.4   | Discus  | sion                        |                               | 284        |
|    |       | 9.4.1   | Research Pr                 | oposition 1                   | 288        |
|    |       | 9.4.2   | Research Pr                 | oposition 2                   | 290        |
|    |       | 9.4.3   | Research Pr                 | oposition 3                   | 291        |
|    |       | 9.4.4   | Research Pr                 | oposition 4                   | 294        |
|    |       | 9.4.5   | Research Pr                 | oposition 5                   | 294        |
|    | 9.5   | Result  | S                           |                               | 295        |
|    |       | Conclu  |                             |                               | 296        |
|    |       | Refere  | nces                        |                               | 297        |
| 10 | Heal  | thcare  | Internet of                 | Things: A New Revolution      | 301        |
|    | Man   | preet K | aur, M. Sug                 | adev, Harpreet Kaur,          |            |
|    | Md F  | Rashid  | Mahmood a                   | nd Vikas Maheshwari           |            |
|    |       |         | duction                     |                               | 302        |
|    |       |         |                             | rchitecture (IoT)             | 303<br>304 |
|    | 10.3  | Healt   | Healthcare IoT Technologies |                               |            |
|    |       | 10.3.   |                             | gy for Identification         | 305        |
|    |       | 10.3.2  |                             | Technology                    | 306        |
|    |       |         |                             | Mobile-Based IoT              | 306        |
|    |       |         |                             | Wearable Devices              | 308        |
|    |       |         |                             | Ambient-Assisted Living (AAL) | 314        |
|    |       | 10.3.3  |                             | licative Systems              | 315        |
|    |       |         |                             | Radiofrequency Identification | 316        |
|    |       |         |                             | Bluetooth                     | 316        |
|    |       |         | 10.3.3.3                    | 6                             | 317        |
|    |       |         |                             | Near Field Communication      | 317        |
|    |       |         |                             | Wireless Fidelity (Wi-Fi)     | 318        |
|    |       |         |                             | Satellite Communication       | 318        |
|    | 10.4  |         | •                           | d Healthcare Services         | 319        |
|    | 10.5  | •       | itive Compu                 |                               | 321        |
|    | 10.6  |         | rse Drug Rea                | action                        | 323        |
|    |       | Block   |                             |                               | 325        |
|    |       |         | l Health Info               |                               | 327        |
|    |       |         | rth in Health               |                               | 328        |
|    |       |         | fits of IoT in              | Healthcare                    | 328        |
|    | 10.11 | Conc    |                             |                               | 329        |
|    |       | Refer   | ences                       |                               | 330        |

| 11 | Detec | ction-Ba | sed Visual Object Tracking Based                |     |
|----|-------|----------|-------------------------------------------------|-----|
|    | on Er | nhanced  | YOLO-Lite and LSTM                              | 339 |
|    | Aayu  | shi Gau  | tam and Sukhwinder Singh                        |     |
|    | 11.1  | Introdu  | action                                          | 340 |
|    | 11.2  | Related  | l Work                                          | 341 |
|    | 11.3  | Propos   | ed Approach                                     | 343 |
|    |       | 11.3.1   | Enhanced YOLO-Lite                              | 344 |
|    |       | 11.3.2   | Long Short-Term Memory                          | 346 |
|    |       | 11.3.3   | Working of Proposed Framework                   | 347 |
|    | 11.4  | Evaluat  | tion Metrics                                    | 349 |
|    | 11.5  | Experi   | mental Results and Discussion                   | 350 |
|    |       |          | Implementation Details                          | 350 |
|    |       | 11.5.2   | Performance on OTB-2015                         | 350 |
|    |       | 11.5.3   | Performance on VOT-2016                         | 353 |
|    |       | 11.5.4   | Performance on UAV-123                          | 354 |
|    | 11.6  | Conclu   | sion                                            | 356 |
|    |       | Referen  | nces                                            | 356 |
| 12 | Intro | duction  | to AmI and IoT                                  | 361 |
|    | Dolly | Thanka   | ichan                                           |     |
|    | 12.1  | Introdu  | action                                          | 362 |
|    |       | 12.1.1   | AmI and IoT Characteristics and Definition      |     |
|    |       |          | of Overlaps                                     | 362 |
|    |       |          | 12.1.1.1 Perceptions of "AmI" and the "IoT"     | 363 |
|    |       | 12.1.2   | Prospects and Perils of AmI and the IoT         | 364 |
|    |       |          | 12.1.2.1 Assistances and Claim Areas            | 364 |
|    |       |          | 12.1.2.2 Intimidations and Contests Relating    |     |
|    |       |          | to AmI and the IoT                              | 365 |
|    | 12.2  | AmI ar   | nd the IoT and Environmental and Societal       |     |
|    |       | Sustain  | ability: Dangers, Challenges,                   |     |
|    |       | and Ur   | lderpinnings                                    | 366 |
|    | 12.3  | Role of  | AmI and the IoT as New I.C.T.s                  |     |
|    |       | to Con   | servational and Social Sustainability           | 367 |
|    |       | 12.3.1   | AmI and the IoT for Environmental               |     |
|    |       |          | Sustainability: Issues, Discernment,            |     |
|    |       |          | and Favoritisms in Tactical Innovation Pursuits | 368 |
|    | 12.4  | The En   | vironmental Influences of AmI and the           |     |
|    |       | IoT Tee  | chnology                                        | 369 |
|    |       | 12.4.1   | Fundamental Properties                          | 370 |
|    |       |          | Boom Properties                                 | 370 |
|    |       |          |                                                 |     |

|                |                   | 12.4.3 Oblique Outcomes                       | 371 |  |  |  |
|----------------|-------------------|-----------------------------------------------|-----|--|--|--|
|                |                   | 12.4.4 Straight Outcome                       | 372 |  |  |  |
|                | 12.5              | Conclusion                                    | 374 |  |  |  |
|                |                   | References                                    | 379 |  |  |  |
| 13             | Desig             | gn of Optimum Construction Site Management    |     |  |  |  |
|                | Archi             | itecture: A Quality Perspective Using Machine |     |  |  |  |
|                | Learning Approach |                                               |     |  |  |  |
| Kundan Meshram |                   |                                               |     |  |  |  |
|                | 13.1 Introduction |                                               |     |  |  |  |
|                | 13.2              | Literature Review                             | 386 |  |  |  |
|                | 13.3              | Proposed Construction Management Model Based  |     |  |  |  |
|                |                   | on Machine Learning                           | 390 |  |  |  |
|                | 13.4              | Comparative Analysis                          | 393 |  |  |  |
|                | 13.5              | Conclusion                                    | 395 |  |  |  |
|                |                   | References                                    | 396 |  |  |  |
| Inc            | Index             |                                               |     |  |  |  |

### Design of Optimum Construction Site Management Architecture: A Quality Perspective Using Machine Learning Approach

Kundan Meshram

Department of Civil Engineering, School of Studies (Engineering and Technology), Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), India

#### Abstract

Management of construction components is vital to the overall cost and quality of any construction site. A loosely monitored site might give moderate construction quality but might be very costly in terms of per-unit rate, while a very tightly monitored site might be able to reduce on the per-unit cost, but it might directly affect the construction quality. Over the years, researchers have proposed many techniques for monitoring and control of construction components; some of them have proven to be very effective, while some others have not yet been standardized. In this empirical review, this chapter analyzes different tools and techniques that can be utilized for improving the cost-to-quality metric at a construction site and suggest ways to improve the same. This work will be helpful to a large group of construction-related agencies like builders, contractors, etc., in order to find and implement the best practices for on-site construction management. This chapter also proposes a novel method via which the overall site quality can be improved and evaluate its performance against other state-of-art methods.

Keywords: Construction, site, management, quality, cost

Email: kundan.transpo@gmail.com

Md Rashid Mahmood, Rohit Raja, Harpreet Kaur, Sandeep Kumar and Kapil Kumar Nagwanshi (eds.) Ambient Intelligence and Internet of Things: Convergent Technologies, (383–398) © 2023 Scrivener Publishing LLC